Self-contained soft electrofluidic actuators

Sci Adv. 2021 Aug 20;7(34):eabf8080. doi: 10.1126/sciadv.abf8080. Print 2021 Aug.

Abstract

Soft robotics revolutionized human-robot interactions, yet there exist persistent challenges for developing high-performance soft actuators that are powerful, rapid, controllable, safe, and portable. Here, we introduce a class of self-contained soft electrofluidic actuators (SEFAs), which can directly convert electrical energy into the mechanical energy of the actuators through electrically responsive fluids that drive the outside elastomer deformation. The use of special dielectric liquid enhances fluid flow capabilities, improving the actuation performance of the SEFAs. SEFAs are easily manufactured by using widely available materials and common fabrication techniques, and display excellent comprehensive performances in portability, controllability, rapid response, versatility, safety, and actuation. An artificial muscle stretching a joint and a soft bionic ray swimming in a tank demonstrate their effective performance. Hence, SEFAs offer a platform for developing soft actuators with potential applications in wearable assistant devices and soft robots.