Printable Smart Materials and Devices: Strategies and Applications

Chem Rev. 2022 Mar 9;122(5):5144-5164. doi: 10.1021/acs.chemrev.1c00303. Epub 2021 Aug 20.

Abstract

Smart materials are a kind of functional materials which can sense and response to environmental conditions or stimuli from optical, electrical, magnetic mechanical, thermal, and chemical signals, etc. Patterning of smart materials is the key to achieving large-scale arrays of functional devices. Over the last decades, printing methods including inkjet printing, template-assisted printing, and 3D printing are extensively investigated and utilized in fabricating intelligent micro/nano devices, as printing strategies allow for constructing multidimensional and multimaterial architectures. Great strides in printable smart materials are opening new possibilities for functional devices to better serve human beings, such as wearable sensors, integrated optoelectronics, artificial neurons, and so on. However, there are still many challenges and drawbacks that need to be overcome in order to achieve the controllable modulation between smart materials and device performance. In this review, we give an overview on printable smart materials, printing strategies, and applications of printed functional devices. In addition, the advantages in actual practices of printing smart materials-based devices are discussed, and the current limitations and future opportunities are proposed. This review aims to summarize the recent progress and provide reference for novel smart materials and printing strategies as well as applications of intelligent devices.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Humans
  • Printing, Three-Dimensional
  • Smart Materials*

Substances

  • Smart Materials