Long-term biosolids land application influences soil health

Sci Total Environ. 2021 Oct 15:791:148344. doi: 10.1016/j.scitotenv.2021.148344. Epub 2021 Jun 8.

Abstract

Soil health assessments associated with organic amendment applications have primarily focused attention on manure or composts. Yet, quantifying specific changes in soil health associated with biosolids land applications has yet to be determined. Our objectives were to evaluate the changes in various soil indicators, and utilizing the Soil Management Assessment Framework (SMAF), quantify changes in soil indicator scores and soil health indices as affected by either increasing inorganic N fertilizer (0 up to 112 kg N ha-1) or biosolids (0 up to 11.2 dry Mg ha-1) applied every other year over 22 years. Soils were sampled (0 to 20 cm depth) following 22 years of N fertilizer or biosolids inputs to a dryland wheat-fallow (Triticum aestivum L.) rotation, 11 soil health indicators were monitored under SMAF guidelines, and indicators, indicator scores, and soil health indices were analyzed statistically. In general, increasing N fertilizer application rates had little effect on soil indicators, SMAF indicator scores or soil health indices. Increasing biosolids application rates increased soil organic C (SOC) and potentially mineralizable N (PMN). The SMAF indicator scores showed upward trends for soil pH, SOC, PMN, and microbial biomass C (MBC) associated with increasing biosolids application rates; discussing trends are important as these indicator scores are combined to provide soil health indices. Indeed, increasing biosolids application rates increased soil chemical and biological health indices, leading to an improvement in the overall soil health index. When comparing the overall N fertilizer to biosolids effect, biosolids applications significantly improved the soil biological health index. Results indicate that long-term biosolids land application to semi-arid, dryland wheat fallow rotations, similar to those studied, improve various aspects of soil health. These findings suggest that biosolids may play a pivotal role in dryland agroecosystem sustainability.

Keywords: Agroecosystem sustainability; Biosolids land application; Increased soil chemical/biological/overall health; Soil Management Assessment Framework.

MeSH terms

  • Biosolids
  • Fertilizers
  • Soil Pollutants*
  • Soil*
  • Triticum

Substances

  • Biosolids
  • Fertilizers
  • Soil
  • Soil Pollutants