Glass-liquid and glass-gel transitions of soft-shell particles

Phys Rev E. 2021 Jul;104(1):L012602. doi: 10.1103/PhysRevE.104.L012602.

Abstract

We study the structure and dynamics of colloidal particles with a spherical hard core and a thermo-responsive soft shell over the whole phase diagram by means of small-angle x-ray scattering and x-ray photon correlation spectroscopy. By changing the effective volume fraction by temperature and particle concentration, liquid, repulsive glass. and attractive gel phases are observed. The dynamics slow down with increasing volume fraction in the liquid phase and reflect a Vogel-Fulcher-Tamann behavior known for fragile glass formers. We find a liquid-glass transition above 50 vol.% that is independent of the particles' concentration and temperature. In an overpacked state at effective volume fractions above 1, the dispersion does not show a liquid phase but undergoes a gel-glass transition at an effective volume fraction of 34 vol.%. At the same concentration, extrema of subdiffusive dynamics are found in the liquid phase at lower weight fractions. We interpret this as dynamic precursors of the glass-gel transition.