Self-initiated behavioral change and disease resurgence on activity-driven networks

Phys Rev E. 2021 Jul;104(1-1):014307. doi: 10.1103/PhysRevE.104.014307.

Abstract

We consider a population that experienced a first wave of infections, interrupted by strong, top-down, governmental restrictions and did not develop a significant immunity to prevent a second wave (i.e., resurgence). As restrictions are lifted, individuals adapt their social behavior to minimize the risk of infection. We explore two scenarios. In the first, individuals reduce their overall social activity towards the rest of the population. In the second scenario, they maintain normal social activity within a small community of peers (i.e., social bubble) while reducing social interactions with the rest of the population. In both cases, we investigate possible correlations between social activity and behavior change, reflecting, for example, the social dimension of certain occupations. We model these scenarios considering a susceptible-infected-recovered epidemic model unfolding on activity-driven networks. Extensive analytical and numerical results show that (i) a minority of very active individuals not changing behavior may nullify the efforts of the large majority of the population and (ii) imperfect social bubbles of normal social activity may be less effective than an overall reduction of social interactions.