Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution

PLoS Biol. 2021 Aug 19;19(8):e3001322. doi: 10.1371/journal.pbio.3001322. eCollection 2021 Aug.

Abstract

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization*
  • Animals
  • Aquatic Organisms / microbiology*
  • Biological Evolution*
  • Ecology*
  • Ecosystem
  • Humans
  • Microbiota*
  • Symbiosis

Grants and funding

Financial support for the workshop was provided by grant GBMF5603 (https://doi.org/10.37807/GBMF5603) from the Gordon and Betty Moore Foundation (W.T. Wcislo, J.A. Eisen, co-PIs), and additional funding from the Smithsonian Tropical Research Institute and the Office of the Provost of the Smithsonian Institution (W.T. Wcislo, J.P. Meganigal, and R.C. Fleischer, co-PIs). JP was supported by a WWTF VRG Grant and the ERC Starting Grant 'EvoLucin'. LGEW has received funding from the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement No. 101025649. AO was supported by the Sistema Nacional de Investigadores (SENACYT, Panamá). A. Apprill was supported by NSF award OCE-1938147. D.I. Kline, M. Leray, S.R. Connolly, and M.E. Torchin were supported by a Rohr Family Foundation grant for the Rohr Reef Resilience Project, for which this is contribution #2. This is contribution #85 from the Smithsonian’s MarineGEO and Tennenbaum Marine Observatories Network. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.