Muonium Addition to a peri-Trifluoromethylated 9-Phosphaanthracene Producing a High-Energy Paramagnetic π-Conjugated Fused Heterocycle

Angew Chem Int Ed Engl. 2021 Nov 2;60(45):24034-24038. doi: 10.1002/anie.202109784. Epub 2021 Sep 17.

Abstract

In this communication, we report muon spin rotation/resonance (μSR) studies for understanding radical reactivity of 10-mesityl-1,8-bis(trifluoromethyl)-9-phosphaanthracene. Transverse-field muon spin rotation (TF-μSR) and muon avoided level-crossing resonance (μLCR) measurements successfully visualized a paramagnetic species produced by regioselective addition of muonium (Mu) to the skeletal phosphorus atom. Density functional theory (DFT) calculations for the P-muoniation product suggested two possible isomers. Whereas the most stable isomer including the envelope-type phosphorus heterocycle shows considerably different hyperfine coupling constants (hfcs) from those of the TF-μSR and μLCR, the metastable structure accompanying the almost planar tricyclic π-conjugated skeleton could simulate the experimentally determined hfcs. The metastable planar π-conjugated paramagnetic tricyclic-fused skeleton is promoted by the larger zero-point energy due to the light muon (μ+ ), one ninth of the proton mass.

Keywords: fluorine; isotope effect; muon; phosphorus heterocycles; radicals.