How to design an icosahedral quasicrystal through directional bonding

Nature. 2021 Aug;596(7872):367-371. doi: 10.1038/s41586-021-03700-2. Epub 2021 Aug 18.

Abstract

Icosahedral quasicrystals (IQCs) are materials that exhibit long-range order but lack periodicity in any direction. Although IQCs were the first reported quasicrystals1, they have been experimentally observed only in metallic alloys2, not in other materials. By contrast, quasicrystals with other symmetries (particularly dodecagonal) have now been found in several soft-matter systems3-5. Here we introduce a class of IQCs built from model patchy colloids that could be realized experimentally using DNA origami particles. Our rational design strategy leads to systems that robustly assemble in simulations into a target IQC through directional bonding. This is illustrated for both body-centred and primitive IQCs, with the simplest systems involving just two particle types. The key design feature is the geometry of the interparticle interactions favouring the propagation of an icosahedral network of bonds, despite this leading to many particles not being fully bonded. As well as furnishing model systems in which to explore the fundamental physics of IQCs, our approach provides a potential route towards functional quasicrystalline materials.

Publication types

  • Research Support, Non-U.S. Gov't