Cancer-associated fibroblasts are associated with poor prognosis in solid type of lung adenocarcinoma in a machine learning analysis

Sci Rep. 2021 Aug 18;11(1):16779. doi: 10.1038/s41598-021-96344-1.

Abstract

Cancer-associated fibroblasts (CAFs) participate in critical processes in the tumor microenvironment, such as extracellular matrix remodeling, reciprocal signaling interactions with cancer cells and crosstalk with infiltrating inflammatory cells. However, the relationships between CAFs and survival are not well known in lung cancer. The aim of this study was to reveal the correlations of CAFs with survival rates, genetic alterations and immune activities. This study reviewed the histological features of 517 patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database. We performed gene set enrichment analysis (GSEA), network-based analysis and survival analysis based on CAFs in four histological types of lung adenocarcinoma: acinar, papillary, micropapillary and solid. We found four hallmark gene sets, the epithelial-mesenchymal transition, angiogenesis, hypoxia, and inflammatory response gene sets, that were associated with the presence of CAFs. CAFs were associated with tumor proliferation, elevated memory CD4+T cells and high CD274 (encoding PD-L1) expression. In the pathway analyses, CAFs were related to blood vessel remodeling, matrix organization, negative regulation of apoptosis and transforming growth factor-β signaling. In the survival analysis of each histological type, CAFs were associated with poor prognosis in the solid type. These results may contribute to the development of therapeutic strategies against lung adenocarcinoma cases in which CAFs are present.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma of Lung* / genetics
  • Adenocarcinoma of Lung* / metabolism
  • Adenocarcinoma of Lung* / mortality
  • Cancer-Associated Fibroblasts / metabolism*
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / metabolism
  • Carcinoma, Non-Small-Cell Lung* / mortality
  • Disease-Free Survival
  • Female
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / metabolism
  • Lung Neoplasms* / mortality
  • Machine Learning*
  • Male
  • Survival Rate
  • Tumor Microenvironment*