Bioinspired All-Polyester Diblock Copolymers Made from Poly(pentadecalactone) and Poly(2-(2-hydroxyethoxy)benzoate): Synthesis and Polymer Film Properties

Macromol Chem Phys. 2020 May 19;221(12):2000118. doi: 10.1002/macp.202000118. eCollection 2020 Jun 22.

Abstract

The bioinspired diblock copolymers poly(pentadecalactone)-block-poly(2-(2-hydroxyethoxy)-benzoate) (PPDL-block-P2HEB) were synthesized from pentadecalactone and dihydro-5H-1,4-benzodioxepin-5-one (2,3-DHB). No transesterification between the blocks was observed. In a sequential approach, PPDL obtained by ring-opening polymerization (ROP) was used to initiate 2,3-DHB. Here, the molar mass Mn of the P2HEB block was limited. In a modular approach, end-functionalized PPDL and P2HEB were obtained separately by ROP with functional initiators, and connected by 1,3-dipolar Huisgen reaction ("click-chemistry"). Block copolymer compositions from 85:15 mass percent to 28:72 mass percent (PPDL:P2HEB) were synthesized, with Mn of from about 30,000-50,000 g mol-1. The structure of the block copolymer was confirmed by proton NMR, FTIR spectroscopy, and gel permeation chromatography. Morphological studies by atomic force microscopy (AFM) further confirmed the block copolymer structure, while quantitative nanomechanical AFM measurements revealed that the DMT moduli of the block copolymers ranged between 17.2 ± 1.8 MPa and 62.3 ± 5.7 MPa, i.e. between the values of the parent P2HEB and PPDL homopolymers (7.6 ± 1.4 MPa and 801 ± 42 MPa, respectively). Differential scanning calorimetry showed that the thermal properties of the homopolymers were retained by each of the copolymer blocks (melting temperature 90 °C, glass transition temperature 36 °C).

Keywords: aliphatic-aromatic block copolymers; bioinspired polymers; copper-catalyzed azide-alkyne cycloaddition reaction; film formation.