Determination of the electronic transport in type separated carbon nanotubes thin films doped with gold nanocrystals

Sci Rep. 2021 Aug 17;11(1):16690. doi: 10.1038/s41598-021-96307-6.

Abstract

We report a systematic theoretical and experimental investigation on the electronic transport evolution in metallic and semiconducting carbon nanotubes thin films enriched by gold nanocrystals. We used an ultra-clean production method of both types of single-walled carbon nanotube thin films with/without gold nanocrystals, which were uniformly dispersed in the whole volume of the thin films, causing a modification of the doping level of the films (verified by Raman spectroscopy). We propose a modification of the electronic transport model with the additional high-temperature features that allow us to interpret the transport within a broader temperature range and that are related to the conductivity type of carbon nanotubes. Moreover, we demonstrate, that the proposed model is also working for thin films with the addition of gold nanocrystals, and only a change of the conductivity level of our samples is observed caused by modification of potential barriers between carbon nanotubes. We also find unusual behavior of doped metallic carbon nanotube thin film, which lowers its conductivity due to doping.