A linear DNA template-based framework for site-specific unnatural amino acid incorporation

Synth Syst Biotechnol. 2021 Jul 31;6(3):192-199. doi: 10.1016/j.synbio.2021.07.003. eCollection 2021 Sep.

Abstract

Site-specific incorporation of unnatural amino acids (UNAAs) into proteins using an orthogonal translation system (OTS) has expanded the scope of protein-coding chemistry. The key factor affecting UNAA embedding efficiency is the orthogonality of the OTS. Compared to traditional cell systems, cell-free systems are more convenient to control the reaction process and improve the utilization rate of UNAA. In this study, a linear DNA template-based cell-free unnatural protein synthesis system for rapid high-throughput screening and evolution was proposed. A total of 14 cell extracts were selected for screening out cell extract with high expression level. The result showed that EcAR7 ΔA ΔSer cell extract was optimal for the cell-free system. In addition, the screening results of four UNAAs, p-propargyloxy-l-phenylalanine (pPaF), p-azyl-phenylalanine (pAzF), p-acetyl-l-phenylalanine (pAcF), and p-benzoyl-l-phenylalanine (pBpF), showed that o-aaRS and o-tRNA of pPaF had good orthogonality. A new pair of corresponding o-aaRS and o-tRNA for pBpF was screened out. These results proved that this method could speed up the screening of optimal OTS components for UNAAs with versatile functions.

Keywords: Cell-free protein synthesis; Linear PCR product; Rapid screening; Unnatural amino acids.