Secure biometric authentication with de-duplication on distributed cloud storage

PeerJ Comput Sci. 2021 Jul 30:7:e569. doi: 10.7717/peerj-cs.569. eCollection 2021.

Abstract

Cloud computing is one of the evolving fields of technology, which allows storage, access of data, programs, and their execution over the internet with offering a variety of information related services. With cloud information services, it is essential for information to be saved securely and to be distributed safely across numerous users. Cloud information storage has suffered from issues related to information integrity, data security, and information access by unauthenticated users. The distribution and storage of data among several users are highly scalable and cost-efficient but results in data redundancy and security issues. In this article, a biometric authentication scheme is proposed for the requested users to give access permission in a cloud-distributed environment and, at the same time, alleviate data redundancy. To achieve this, a cryptographic technique is used by service providers to generate the bio-key for authentication, which will be accessible only to authenticated users. A Gabor filter with distributed security and encryption using XOR operations is used to generate the proposed bio-key (biometric generated key) and avoid data deduplication in the cloud, ensuring avoidance of data redundancy and security. The proposed method is compared with existing algorithms, such as convergent encryption (CE), leakage resilient (LR), randomized convergent encryption (RCE), secure de-duplication scheme (SDS), to evaluate the de-duplication performance. Our comparative analysis shows that our proposed scheme results in smaller computation and communication costs than existing schemes.

Keywords: Cloud computing; Dynamic speed scaling algorithm; EIoT; Edge computing; Energy; IoT.

Grants and funding

The authors received no funding for this work.