Operator-as-a-Consumer: A Novel Energy Storage Sharing Approach Under Demand Charge

IEEE Trans Cybern. 2023 Feb;53(2):941-953. doi: 10.1109/TCYB.2021.3088221. Epub 2023 Jan 13.

Abstract

Energy storage systems (ESSs)-based demand response (DR) is an appealing way to save electricity bills for consumers under demand charge and time-of-use (TOU) price. In order to counteract the high investment cost of ESS, a novel operator-enabled ESS sharing scheme, namely, the "operator-as-a-consumer (OaaC)," is proposed and investigated in this article. In this scheme, the users and the operator form a Stackelberg game. The users send ESS orders to the operator and apply their own ESS dispatching strategies for their own purposes. Meanwhile, the operator maximizes its profit through optimal ESS sizing and scheduling, as well as pricing for the users' ESS orders. The feasibility and economic performance of OaaC are further analyzed by solving a bilevel joint optimization problem of ESS pricing, sizing, and scheduling. To make the analysis tractable, the bilevel model is first transformed into its single-level mathematical program with equilibrium constraints (MPEC) formulation and is then linearized into a mixed-integer linear programming (MILP) problem using multiple linearization methods. Case studies with actual data are utilized to demonstrate the profitability for the operator and simultaneously the ability of bill saving for the users under the proposed OaaC scheme.