Fast Preparation and Detection of a Rydberg Qubit Using Atomic Ensembles

Phys Rev Lett. 2021 Jul 30;127(5):050501. doi: 10.1103/PhysRevLett.127.050501.

Abstract

We demonstrate a new approach for fast preparation, manipulation, and collective readout of an atomic Rydberg-state qubit. By making use of Rydberg blockade inside a small atomic ensemble, we prepare a single qubit within 3 μs with a success probability of F_{p}=0.93±0.02, rotate it, and read out its state in 6 μs with a single-shot fidelity of F_{d}=0.92±0.04. The ensemble-assisted detection is 10^{3} times faster than imaging of a single atom with the same optical resolution, and enables fast repeated nondestructive measurement. We observe qubit coherence times of 15 μs, much longer than the π rotation time of 90 ns. Potential applications ranging from faster quantum information processing in atom arrays to efficient implementation of quantum error correction are discussed.