Combination of a Sindbis-SARS-CoV-2 Spike Vaccine and αOX40 Antibody Elicits Protective Immunity Against SARS-CoV-2 Induced Disease and Potentiates Long-Term SARS-CoV-2-Specific Humoral and T-Cell Immunity

Front Immunol. 2021 Jul 29:12:719077. doi: 10.3389/fimmu.2021.719077. eCollection 2021.

Abstract

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is a major global public threat. Currently, a worldwide effort has been mounted to generate billions of effective SARS-CoV-2 vaccine doses to immunize the world's population at record speeds. However, there is still a demand for alternative effective vaccines that rapidly confer long-term protection and rely upon cost-effective, easily scaled-up manufacturing. Here, we present a Sindbis alphavirus vector (SV), transiently expressing the SARS-CoV-2 spike protein (SV.Spike), combined with the OX40 immunostimulatory antibody (αOX40) as a novel, highly effective vaccine approach. We show that SV.Spike plus αOX40 elicits long-lasting neutralizing antibodies and a vigorous T-cell response in mice. Protein binding, immunohistochemical, and cellular infection assays all show that vaccinated mice sera inhibits spike functions. Immunophenotyping, RNA Seq transcriptome profiles, and metabolic analysis indicate a reprogramming of T cells in vaccinated mice. Activated T cells were found to mobilize to lung tissue. Most importantly, SV.Spike plus αOX40 provided robust immune protection against infection with authentic coronavirus in transgenic mice expressing the human ACE2 receptor (hACE2-Tg). Finally, our immunization strategy induced strong effector memory response, potentiating protective immunity against re-exposure to SARS-CoV-2 spike protein. Our results show the potential of a new Sindbis virus-based vaccine platform to counteract waning immune response, which can be used as a new candidate to combat SARS-CoV-2. Given the T-cell responses elicited, our vaccine is likely to be effective against variants that are proving challenging, as well as serve as a platform to develop a broader spectrum pancoronavirus vaccine. Similarly, the vaccine approach is likely to be applicable to other pathogens.

Keywords: COVID19; SARS-CoV-2 immunity; SARS-CoV-2 vaccine; Sindbis virus vaccine; alphavirus vaccine; synergistic combination SARS-CoV-2 vaccine strategy; αOX40.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin-Converting Enzyme 2 / metabolism
  • Animals
  • Antibodies, Neutralizing / immunology
  • Antibodies, Viral / immunology
  • Antigens, Differentiation / immunology*
  • COVID-19 / immunology
  • COVID-19 / prevention & control*
  • COVID-19 Vaccines / immunology*
  • Cricetinae
  • Female
  • HEK293 Cells
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • SARS-CoV-2 / immunology*
  • Sindbis Virus / genetics
  • Sindbis Virus / immunology*
  • Spike Glycoprotein, Coronavirus / immunology*
  • T-Lymphocytes / immunology
  • Vaccination

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • Antigens, Differentiation
  • COVID-19 Vaccines
  • OX40Ig
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • ACE2 protein, human
  • Angiotensin-Converting Enzyme 2