Characterizing the Aging of Alphasense NO2 Sensors in Long-Term Field Deployments

ACS Sens. 2021 Aug 27;6(8):2952-2959. doi: 10.1021/acssensors.1c00729. Epub 2021 Aug 13.

Abstract

Low-cost NO2 sensors have been widely deployed for atmospheric sampling. While their initial performance has been characterized, few studies have examined their long-term degradation. This study focused on the performance of Alphasense low-cost NO2 sensors (NO2-B42F and NO2-B43F) over 4 years (2016-2020). A total of 29 NO2 sensors from 10 batches were collocated 78 times at two sites with reference instruments. Raw signals from "functional" NO2 sensors correlated linearly with reference NO2 concentrations. After long-term deployment, sensor raw signals started to deviate from reference NO2 concentrations due to sensor aging, an accumulated effect after sensor unpacking. Several sensors eventually became "non-functional" as sensor raw signals showed no correlation with reference NO2 concentrations. Sensor aging and non-functionality may be primarily caused by expiration of the ozone (O3) scrubber built into these sensors so that sensors responded to both ambient NO2 and O3. The influence of O3 on sensor response is quantified through the permutation importance method. Most of the sensors are non-functional after approximately 200-400 days of deployment, and no sensor was functional after 400 days of deployment. This result agrees well with the estimated lifetime of the built-in ozone scrubbers considering the ambient ozone concentration in the Pittsburgh area where these sensors were deployed. To ensure reliable data quality in long-term field deployments, we recommend collocating NO2 sensors with reference instruments regularly after 200-400 days of deployment to identify and replace non-functional sensors in a timely manner.

Keywords: long-term deployment; low-cost NO2 sensor; malfunction identification; ozone scrubber; sensor aging.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air Pollutants* / analysis
  • Environmental Monitoring
  • Nitrogen Dioxide / analysis
  • Ozone* / analysis

Substances

  • Air Pollutants
  • Ozone
  • Nitrogen Dioxide