The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review

Acta Pharm Sin B. 2021 Jul;11(7):1740-1766. doi: 10.1016/j.apsb.2020.10.012. Epub 2020 Oct 16.

Abstract

The phytoecdysteroids (PEs) comprise a large group of biologically-active plant steroids, which have structures similar to those of insect-molting hormones. PEs are distributed in plants as secondary metabolites that offer protection against phytophagus (plant-eating) insects. When insects consume the plants containing these chemicals, they promptly molt and undergo metabolic destruction; the insects eventually die. Chemically, ecdysteroids are a group of polyhydroxylated ketosteroids that are structurally similar to androgens. The carbon skeleton of ecdysteroids is termed as cyclopentanoperhydro-phenanthrene with a β-side chain at carbon-17. The essential characteristics of ecdysteroids are a cis-(5β-H) junction of rings A and B, a 7-en-6-one chromophore, and a trans-(14α-OH) junction of rings C and D. Plants only synthesize PEs from mevalonic acid in the mevalonate pathway of the plant cell using acetyl-CoA as a precursor; the most common PE is 20-hydroxyecdysone. So far, over 400 PEs have been identified and reported, and a compilation of 166 PEs originating from 1998 has been previously reviewed. In the present review, we have summarized 212 new PEs reported between 1999 and 2019. We have also critically analyzed the biological, pharmacological, and medicinal properties of PEs to understand the full impact of these phytoconstituents in health and disease.

Keywords: Anti-inflammatory; Anticancer activity; Antidiabetic; Antimicrobial; Antioxidant; Phytoecdysteroids; Secondary metabolites.

Publication types

  • Review