Process Model Approach to Predict Tablet Weight Variability for Direct Compression Formulations at Pilot and Production Scale

Pharmaceutics. 2021 Jul 7;13(7):1033. doi: 10.3390/pharmaceutics13071033.

Abstract

Optimizing processing conditions to achieve a critical quality attribute (CQA) is an integral part of pharmaceutical quality by design (QbD). It identifies combinations of material and processing parameters ensuring that processing conditions achieve a targeted CQA. Optimum processing conditions are formulation and equipment-dependent. Therefore, it is challenging to translate a process design between formulations, pilot-scale and production-scale equipment. In this study, an empirical model was developed to determine optimum processing conditions for direct compression formulations with varying flow properties, across pilot- and production-scale tablet presses. The CQA of interest was tablet weight variability, expressed as percentage relative standard deviation. An experimental design was executed for three model placebo blends with varying flow properties. These blends were compacted on one pilot-scale and two production-scale presses. The process model developed enabled the optimization of processing parameters for each formulation, on each press, with respect to a target tablet weight variability of <1%RSD. The model developed was successfully validated using data for additional placebo and active formulations. Validation formulations were benchmarked to formulations used for model development, employing permeability index values to indicate blend flow.

Keywords: direct compression; powder flow; process model; process optimization; quality by design; tablet weight variability.