Photoswitchable Composite Polymer Electrolytes Using Spiropyran-Immobilized Nanoporous Templates

Chemistry. 2021 Oct 25;27(60):14981-14988. doi: 10.1002/chem.202102689. Epub 2021 Sep 21.

Abstract

Composite polymer electrolytes (CPEs) with smart, stimuli-responsive characteristics have gained considerable attention owing to their noninvasive manipulation and applications in future technologies. To address this potential, in this work, we demonstrate photoresponsive composite polymer electrolytes, consisting of gel polymer electrolyte (GPE) and spiropyran-immobilized nanoporous anodic aluminum oxide (SP-AAO) templates. Under UV irradiation, the close SP form isomerizes to the open merocyanine (MC) form, creating extremely polarized AAO surfaces; whereas, under visible light irradiation, the MC form reverts to the SP form, creating neutral surface conditions. The electrostatic interactions between ions and AAO surfaces are investigated by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Moreover, the behavior of ionic conductivity of the GPE@SP-AAO is found to be consistent with the kinetics of isomerization tracked by UV-Vis spectroscopy. This work provides a promising platform for developing next-generation photoelectronic smart devices.

Keywords: anodic aluminum oxides; conducting materials; photoresponsive; polymers; spiropyran.

MeSH terms

  • Benzopyrans
  • Electrolytes
  • Indoles
  • Nanopores*
  • Nitro Compounds
  • Polymers*

Substances

  • Benzopyrans
  • Electrolytes
  • Indoles
  • Nitro Compounds
  • Polymers
  • spiropyran