Neuromuscular adaptations to training

J Appl Physiol (1985). 1987 Dec;63(6):2396-402. doi: 10.1152/jappl.1987.63.6.2396.

Abstract

The purpose of this experiment was to determine whether there is a central adaptation to resistance overload. The right adductor pollicis muscle of each subject was trained with either voluntary (n = 9) or electrically stimulated contractions (n = 7), the contralateral muscle acted as an internal control, and seven other subjects acted as a control group. Training was the same in both groups: 15 contractions at 80% maximal voluntary contraction (MVC), 3 days/wk for 5 wk. Trained muscles in both groups increased MVC by approximately 15% (voluntary, P less than 0.01; stimulated, P less than 0.05). There was a small (9.5%) but significant (P less than 0.05) increase in MVC of the untrained muscles in the voluntary group. MVC did not change in the control group. Maximal electromyogram (EMG) was highly reproducible pre-to posttraining in the control group (r = 0.92, slope = 0.995) and did not change pre- to posttraining in the trained groups. Sensory adaptation to training caused a reduction in force sensation in the stimulated group (P less than 0.05) but not in the voluntary group. Because there was a small increase in MVC of the untrained muscle of the voluntary group (9.5%, P less than 0.05) but not in the stimulated group, it is possible that there is a central motor adaptation, but it is not manifested in increased neural drive (EMG). Moreover, this central adaptation may be responsible for the decrease in force sensation that follows training.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological*
  • Electric Stimulation
  • Electromyography
  • Fatigue*
  • Humans
  • Muscle Contraction*
  • Neuromuscular Junction / physiology*
  • Time Factors