Synthesis and Characterization of WO3/CeO2 Heterostructured Nanoparticles for Photodegradation of Indigo Carmine Dye

ACS Omega. 2021 Jul 22;6(30):19771-19777. doi: 10.1021/acsomega.1c02453. eCollection 2021 Aug 3.

Abstract

WO3/CeO2 heterostructured nanocomposites containing different WO3 ratios (0.1, 0.3, 0.5, and 1.0 wt %) were synthesized by a precipitation method. The coupling of CeO2 and WO3 with a high specific surface area noticeably enhanced the photocatalytic activity of indigo carmine (IC) degradation under visible-light irradiation. The degradation rate constants (k) of 0.5 wt % WO3/CeO2 nanocomposites reached 4 and 5 times higher than those of CeO2 and WO3, respectively. Regarding the experimental results, the X-ray diffraction (XRD) patterns of the CeO2 spherical nanoparticles and rod-shaped WO3 were assigned to the cubic fluorite and orthorhombic phase structures, respectively. The increasing photocatalytic activity of nanocomposite samples could be attributed to the heterojunction of the photocatalysts with efficient charge separation and strong oxidative ability, which were confirmed by the photoluminescence spectra and diffuse reflectance spectrometry. The staggered heterojunction of the nanocomposite promoted efficient electron transfer and suppressed the recombination of photogenerated electrons and holes during the process.