Matrix biophysical cues direct mesenchymal stromal cell functions in immunity

Acta Biomater. 2021 Oct 1:133:126-138. doi: 10.1016/j.actbio.2021.07.075. Epub 2021 Aug 5.

Abstract

Hydrogels have been used to design synthetic matrices that capture salient features of matrix microenvironments to study and control cellular functions. Recent advances in understanding of both extracellular matrix biology and biomaterial design have shown that biophysical cues are powerful mediators of cell biology, especially that of mesenchymal stromal cells (MSCs). MSCs have been tested in many clinical trials because of their ability to modulate immune cells in different pathological conditions. While roles of biophysical cues in MSC biology have been studied in the context of multilineage differentiation, their significance in regulating immunomodulatory functions of MSCs is just beginning to be elucidated. This review first describes design principles behind how biophysical cues in native microenvironments influence the ability of MSCs to regulate immune cell production and functions. We will then discuss how biophysical cues can be leveraged to optimize cell isolation, priming, and delivery, which can help improve the success of MSC therapy for immunomodulation. Finally, a perspective is presented on how implementing biophysical cues in MSC potency assay can be important in predicting clinical outcomes. STATEMENT OF SIGNIFICANCE: Stromal cells of mesenchymal origin are known to direct immune cell functions in vivo by secreting paracrine mediators. This property has been leveraged in developing mesenchymal stromal cell (MSC)-based therapeutics by adoptive transfer to treat immunological rejection and tissue injuries, which have been tested in over one thousand clinical trials to date, but with mixed success. Advances in biomaterial design have enabled precise control of biophysical cues based on how stromal cells interact with the extracellular matrix in microenvironments in situ. Investigators have begun to use this approach to understand how different matrix biophysical parameters, such as fiber orientation, porosity, dimensionality, and viscoelasticity impact stromal cell-mediated immunomodulation. The insights gained from this effort can potentially be used to precisely define the microenvironmental cues for isolation, priming, and delivery of MSCs, which can be tailored based on different disease indications for optimal therapeutic outcomes.

Keywords: Biomaterials; Immunomodulation; Mechanomedicine; Mechanotransduction; Mesenchymal stromal cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cell Differentiation
  • Cues
  • Extracellular Matrix
  • Immunomodulation
  • Mesenchymal Stem Cells*