Antimicrobial Peptide Modifications against Clinically Isolated Antibiotic-Resistant Salmonella

Molecules. 2021 Jul 31;26(15):4654. doi: 10.3390/molecules26154654.

Abstract

Antimicrobial peptides are promising molecules to address the global antibiotic resistance problem, however, optimization to achieve favorable potency and safety is required. Here, a peptide-template modification approach was employed to design physicochemical variants based on net charge, hydrophobicity, enantiomer, and terminal group. All variants of the scorpion venom peptide BmKn-2 with amphipathic α-helical cationic structure exhibited an increased antibacterial potency when evaluated against multidrug-resistant Salmonella isolates at a MIC range of 4-8 µM. They revealed antibiofilm activity in a dose-dependent manner. Sheep red blood cells were used to evaluate hemolytic and cell selectivity properties. Peptide Kn2-5R-NH2, dKn2-5R-NH2, and 2F-Kn2-5R-NH2 (variants with +6 charges carrying amidated C-terminus) showed stronger antibacterial activity than Kn2-5R (a variant with +5 charges bearing free-carboxyl group at C-terminus). Peptide dKn2-5R-NH2 (d-enantiomer) exhibited slightly weaker antibacterial activity with much less hemolytic activity (higher hemolytic concentration 50) than Kn2-5R-NH2 (l-enantiomer). Furthermore, peptide Kn2-5R with the least hydrophobicity had the lowest hemolytic activity and showed the highest specificity to Salmonella (the highest selectivity index). This study also explained the relationship of peptide physicochemical properties and bioactivities that would fulfill and accelerate progress in peptide antibiotic research and development.

Keywords: antimicrobial peptide; bactericidal agent; biofilm inhibition and eradication; hemolytic activity; multidrug-resistant; peptide design; structure-activity relationship.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / adverse effects
  • Anti-Bacterial Agents / chemistry
  • Anti-Infective Agents / chemistry
  • Anti-Infective Agents / pharmacology*
  • Antimicrobial Cationic Peptides / chemistry
  • Biofilms / drug effects
  • Drug Resistance, Bacterial / drug effects
  • Drug Resistance, Bacterial / genetics*
  • Erythrocytes / drug effects
  • Erythrocytes / microbiology
  • Hemolysis / drug effects
  • Microbial Sensitivity Tests
  • Pore Forming Cytotoxic Proteins / genetics
  • Pore Forming Cytotoxic Proteins / pharmacology*
  • Salmonella / drug effects
  • Salmonella / genetics
  • Salmonella / pathogenicity
  • Scorpion Venoms / chemistry
  • Scorpion Venoms / pharmacology
  • Sheep / blood
  • Sheep / microbiology
  • Structure-Activity Relationship

Substances

  • Anti-Bacterial Agents
  • Anti-Infective Agents
  • Antimicrobial Cationic Peptides
  • Pore Forming Cytotoxic Proteins
  • Scorpion Venoms