Adsorption in Mixtures with Competing Interactions

Molecules. 2021 Jul 27;26(15):4532. doi: 10.3390/molecules26154532.

Abstract

A binary mixture of oppositely charged particles with additional short-range attraction between like particles and short-range repulsion between different ones in the neighborhood of a substrate preferentially adsorbing the first component is studied by molecular dynamics simulations. The studied thermodynamic states correspond to an approach to the gas-crystal coexistence. Dependence of the near-surface structure, adsorption and selective adsorption on the strength of the wall-particle interactions and the gas density is determined. We find that alternating layers or bilayers of particles of the two components are formed, but the number of the adsorbed layers, their orientation and the ordered patterns formed inside these layers could be quite different for different substrates and gas density. Different structures are associated with different numbers of adsorbed layers, and for strong attraction the thickness of the adsorbed film can be as large as seven particle diameters. In all cases, similar amount of particles of the two components is adsorbed, because of the long-range attraction between different particles.

Keywords: adsorption; competing interactions; mixture of charged particles; self-assembly.