A Study on the Effect of Adhesive Cavities on the Scuffing Initiation in a Sliding Contact

Materials (Basel). 2021 Jul 31;14(15):4296. doi: 10.3390/ma14154296.

Abstract

Scuffing is a particularly problematic wear phenomenon in sliding contact that has not yet been fully elucidated. The complicated mechanism of the development of this phenomenon results from the simultaneous influence of many factors. There is a continuous need for new research to gain a deeper understanding of the complex frictional processes that scuffing is. Components such as cams, tappets, piston rings and gears are extremely susceptible to scuffing. The idea of the research on the scuffing wear development is the study of the formation of adhesive cavities as the effects of the destruction of adhesive bonds at various operating parameters. The goal of the presented work is the analysis of the influence of the oscillation frequency on the formation of adhesive cavities leading to scuffing. The tests carried out with the use of S235 steel showed that the adhesive cavities on the surfaces of the tested components appear regardless of the adopted values of the oscillation frequency. The surfaces of the specimen and counter-specimen were analyzed before and after wear tests on the block-on-ring test stand at the different values of the oscillation frequency. The conducted research revealed that the greatest change in the values of the friction coefficient occurs with an increase in frequency from 2 to 5 Hz, and the largest change in the number of scuffing initiating cycles occurs with an increase in the oscillation frequency from 1 to 2 Hz.

Keywords: adhesion; non-lubricated conditions; oscillatory motion; scuffing initiation; wear testing.