Functional Materials Based on Cyclometalated Platinum(II) β-Diketonate Complexes: A Review of Structure-Property Relationships and Applications

Materials (Basel). 2021 Jul 29;14(15):4236. doi: 10.3390/ma14154236.

Abstract

Square planar organoplatinum(II) complexes have garnered immense interest in the area of materials research. The combination of the Pt(II) fragment with mono-, bi- tri- and tetradentate organic ligands gives rise to a large variety of complexes with intriguing properties, especially cyclometalated Pt(II) complexes in which ligands are connected through covalent bonds demonstrate higher stability, excellent photoluminescence properties, and diverse applications. The properties and applications of the Pt(II)-based materials can be smartly fine-tuned via a judicious selection of the cyclometalating as well as ancillary ligands. In this review, attempts have been made to provide a brief review of the recent developments of neutral Pt(II) organometallic complexes bearing bidentate cyclometalating ligands and β-diketonate ancillary ligands, i.e., (C^N)Pt(O^O) and (C^C)Pt(O^O) derivatives. Both small (monomeric, dimeric) and large (polymeric) materials have been considered. We critically assessed the role of functionalities (ligands) on photophysical properties and their impact on applications.

Keywords: cyclometalated; opto-electronics; platinum(II); square planar; β-diketonate.

Publication types

  • Review