Natural variation in a type-A response regulator confers maize chilling tolerance

Nat Commun. 2021 Aug 5;12(1):4713. doi: 10.1038/s41467-021-25001-y.

Abstract

Maize (Zea mays L.) is a cold-sensitive species that often faces chilling stress, which adversely affects growth and reproduction. However, the genetic basis of low-temperature adaptation in maize remains unclear. Here, we demonstrate that natural variation in the type-A Response Regulator 1 (ZmRR1) gene leads to differences in chilling tolerance among maize inbred lines. Association analysis reveals that InDel-35 of ZmRR1, encoding a protein harboring a mitogen-activated protein kinase (MPK) phosphorylation residue, is strongly associated with chilling tolerance. ZmMPK8, a negative regulator of chilling tolerance, interacts with and phosphorylates ZmRR1 at Ser15. The deletion of a 45-bp region of ZmRR1 harboring Ser15 inhibits its degradation via the 26 S proteasome pathway by preventing its phosphorylation by ZmMPK8. Transcriptome analysis indicates that ZmRR1 positively regulates the expression of ZmDREB1 and Cellulose synthase (CesA) genes to enhance chilling tolerance. Our findings thus provide a potential genetic resource for improving chilling tolerance in maize.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Cold Temperature
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant
  • Genes, Plant
  • Genetic Variation
  • Glucosyltransferases / genetics
  • Glucosyltransferases / metabolism
  • In Vitro Techniques
  • Mitogen-Activated Protein Kinases / genetics
  • Mitogen-Activated Protein Kinases / metabolism
  • Models, Biological
  • Phosphorylation
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plants, Genetically Modified
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Stress, Physiological / genetics
  • Zea mays / genetics*
  • Zea mays / physiology*

Substances

  • Plant Proteins
  • Recombinant Proteins
  • Glucosyltransferases
  • cellulose synthase
  • Mitogen-Activated Protein Kinases