Intra- and Inter-Molecular Spin Coupling in Phenalenyl Dimeric Systems

J Phys Chem A. 2021 Aug 19;125(32):6893-6901. doi: 10.1021/acs.jpca.1c02705. Epub 2021 Aug 5.

Abstract

Phenalenyl is a triangular aromatic molecule made of three fused benzene rings, carrying an unpaired electron, and many of its derivatives show crystal structures with stacked radicals. Here, we investigate the inter-molecular binding in phenalenyl dimers by state-of-the-art computational methods and phenomenological models. Aside from being important for the supramolecular assembly of such radical molecules, the theoretical insight is relevant in methodological aspects, due to the interplay of long-range exchange coupling effects and van der Waals forces. We used comparative wave function-based and density functional theories. Drawing the potential energy surfaces as a function of inter-planar separation and mutual rotation of the monomer units, we found an interesting pattern which is not discovered in previous computational reports on the title systems. The dependence can be nicely interpreted by a transparent phenomenological model based on an orbital overlap paradigm of exchange coupling. We also brought forth a simplified phenomenological valence bond (VB) model of inter-molecular coupling, which is realized on the background of the VB spin model inside of the aromatic monomers and calibrated with the corresponding ab initio data. As the systems can be considered good candidates with potential applications in spintronics and organic magnetism, the theoretical rationalization opens up prospective ways to realize such promises.