Cobalt-Catalyzed Diastereo- and Enantioselective Reductive Allyl Additions to Aldehydes with Allylic Alcohol Derivatives via Allyl Radical Intermediates

J Am Chem Soc. 2021 Aug 18;143(32):12755-12765. doi: 10.1021/jacs.1c05690. Epub 2021 Aug 5.

Abstract

Catalytic generation of ambiphilic π-allyl-metal complexes and their utility in enantioselective transformations constitutes a powerful approach for introduction of allyl groups to a molecule. Herein an unprecedented cobalt-catalyzed highly site-, diastereo-, and enantioselective protocol for stereoselective formation of nucleophilic allyl-Co(II) complexes followed by addition to aldehydes is presented. The reaction features diastereo- and enantioconvergent conversion of easily accessible allylic alcohol derivatives to diversified enantioenriched homoallylic alcohols with a remarkably broad scope of allyl groups that can be introduced. Mechanistic studies indicated that allyl radical intermediates were involved in this process. These new discoveries establish a new strategy for development of enantioselective transformations through capture of radicals by chiral Co complexes, pushing forward the frontier of Co complexes for enantioselective catalysis.

Publication types

  • Research Support, Non-U.S. Gov't