All-Solid-State Thin Film μ-Batteries for Microelectronics

Adv Sci (Weinh). 2021 Oct;8(19):e2100774. doi: 10.1002/advs.202100774. Epub 2021 Aug 5.

Abstract

Continuous advances in microelectronics and micro/nanoelectromechanical systems enable the use of microsized energy storage devices, namely solid-state thin-film μ-batteries. Different from the current button batteries, the μ-battery can directly be integrated on microchips forming a very compact "system on chip" since no liquid electrolyte is used in the μ-battery. The all-solid-state battery (ASSB) that uses solid-state electrolyte has become a research trend because of its high safety and increased capacity. The solid-state thin-film μ-battery belongs to the family of ASSB but in a small format. However, a lot of scientific and technical issues and challenges are to be resolved before its real application, including the ionic conductivity of the solid-state electrolyte, the electrical conductivity of the electrode, integration technologies, electrochemical-induced strain, etc. To achieve this goal, understanding the processing of thin films and fundamentals of ion transfer in the solid-state electrolytes and hence in the μ-batteries becomes utmost important. This review therefore focuses on solid-state ionics and provides inside of ion transportation in the solid state and effects of chemistry on electrochemical behaviors and proposes key technology for processing of the μ-battery.

Keywords: deposition; electrochemical behavior; solid-state battery; solid-state electrolyte; thin film μ-battery.

Publication types

  • Review