Synthesis of water-soluble, ultrabright Cu nanoclusters with core-shell structure via facile reduction approach for determination of 4-nitrophenol

Nanotechnology. 2021 Oct 27;33(3). doi: 10.1088/1361-6528/ac1a95.

Abstract

In this work, we reported a facile reduction approach for fabrication of water-soluble and ultrabright Cu nanoclusters with core-shell structure. A certain amount of reducing agent as NaBH4was introduced into the polyethyleneimine-stabilized Cu nanoclusters (CuNCs@PEI) system, which exhibited 4-fold fluorescence enhancement along with a blue shift of the emission peak. The variations of morphology, valence states and functional groups demonstrated that a Cu shell was formed surround CuNCs (defined as CuNCs-Cu@PEI), attributable to metal complex (PEI-Cu+and PEI-Cu2+) reduction. The effect of core-shell morphology on luminous and electron relaxation mechanism of CuNCs-Cu@PEI was investigated via temperature-dependent steady and time-resolved fluorescence measurements. The CuNCs-Cu@PEI with a high fluorescence quantum yields of 22.59% were able to homogeneously disperse in aqueous phase, indicating their potential applications in biological labeling, sensing and invivoimaging. Finally, the CuNCs-Cu@PEI was employed as a fluorescence probe to determine 4-nitrophenol, of which the detection limit was much lower than initial CuNCs@PEI.

Keywords: 4-nitrophenol detection; Cu nanocluster; core–shell structure; high fluorescence.