Binary-Metal Mn2SnO4 Nanoparticles and Sn Confined in a Cubic Frame with N-Doped Carbon for Enhanced Lithium and Sodium Storage

ACS Appl Mater Interfaces. 2021 Aug 18;13(32):38278-38288. doi: 10.1021/acsami.1c08632. Epub 2021 Aug 3.

Abstract

Sn-based materials have been popularly researched as anodes for energy storage due to their high theoretical capacity. However, the sluggish reaction kinetics and unsatisfied cycling stability caused by poor conductivity and dramatic volume expansion are still pivotal barriers for the development of Sn-based materials as anodes. In this work, the binary-metal Mn2SnO4 nanoparticles and Sn encapsulated in N-doped carbon (Sn@Mn2SnO4-NC) were fabricated by multistep reactions and employed as the anode for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The coexistence of binary metals (Sn and Mn) can improve intrinsic conductivity. Simultaneously, hollow architecture along with carbon relieves internal stress and prevents structural collapse. A Sn@Mn2SnO4-NC anode delivers an appealing capacity of 1039.5 mAh g-1 for 100 cycles at 100 mA g-1 and 823.8 mAh g-1 for 600 cycles at 1000 mA g-1 in LIBs. When evaluated as an anode in SIBs, the Sn@Mn2SnO4-NC anode tolerates up to 7000 cycles at 2000 mA g-1 and maintains a capacity of 185.8 mAh g-1. Quantified kinetic investigations demonstrate the high contribution of pseudocapacitive effects during the cycle process. Furthermore, density functional theory (DFT) calculations further verify that introduction of the second metal (Mn) improves the conductivity of the material, which is favorable for charge transport. This work is expected to provide a feasible preparation strategy for binary-metal materials to enhance the performance of lithium- and sodium-ion batteries.

Keywords: binary metal; density functional theory; hollow structure; lithium-ion batteries; sodium-ion batteries.