Temperature-Dependent Photoluminescence of Hexafluorobenzene-Intercalated Phenethylammonium Tin Iodide 2D Perovskite

Chem Asian J. 2021 Sep 20;16(18):2745-2751. doi: 10.1002/asia.202100755. Epub 2021 Aug 17.

Abstract

Tin halide perovskites are potential alternatives of lead halide perovskites. However, the easy oxidation of Sn2+ to Sn4+ brings in a challenge. Recently, layered two-dimensional hybrid tin halide perovskites have been shown to partially resist the oxidation process because of the presence of hydrophobic organic molecules. Consequently, such layered hybrid perovskites are being explored for optoelectronic applications. The optical properties of layered tin halide perovskites depend on the interlayer separation and the dielectric mismatch between the organic and inorganic layers. Intercalation (insertion) of a molecular species between the layers modifies the interlayer interactions affecting the optical properties of layered hybrid perovskites. We investigated the effect of hexafluorobenzene (HFB) intercalation in phenethylammonium tin iodide [(PEA)2 SnI4 ] using temperature-dependent (6 K to 300 K) photoluminescence (PL). HFB intercalation increases the bandgap. A strong PL quenching is observed in pristine (PEA)2 SnI4 below 150 K, probably because of the presence of non-emissive states. HFB intercalation suppresses the influence of such non-emissive states resulting in an increase in PL intensity at the cryogenic temperatures. Our results highlight that a simple molecular intercalation (non-covalent interaction) into layered hybrid perovskites can significantly tailor the electronic and optical properties.

Keywords: 2D layered hybrid perovskites; Semiconductors; molecular intercalation; optical properties; tin halide perovskites.