Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation

Acta Biomater. 2021 Oct 15:134:240-251. doi: 10.1016/j.actbio.2021.07.064. Epub 2021 Jul 31.

Abstract

Cell-based strategies for nucleus pulposus (NP) regeneration that adequately support the engraftment and functionality of therapeutic cells are still lacking. This study explores a scaffold-free approach for NP repair, which is based on spheroids derived from human nasal chondrocytes (NC), a resilient cell type with robust cartilage-regenerative capacity. We generated NC spheroids (NCS) in two types of medium (growth or chondrogenic) and analyzed their applicability for NP repair with regard to injectability, biomechanical and biochemical attributes, and integration potential in conditions simulating degenerative disc disease (DDD). NCS engineered in both media were compatible with a typical spinal needle in terms of size (lower than 600µm), shape (roundness greater than 0.8), and injectability (no changes in morphology and catabolic gene expression after passing through the needle). While growth medium ensured stable elastic modulus (E) at 5 kPa, chondrogenic medium time-dependently increased E of NCS, in correlation with gene/protein expression of collagen. Notably, DDD-mimicking conditions did not impair NCS viability nor NCS fusion with NP spheroids simulating degenerated NP in vitro. To assess the feasibility of this approach, NCS were injected into an ex vivo-cultured bovine intervertebral disc (IVD) without damage using a spinal needle. In conclusion, our data indicated that NC cultured as spheroids can be compatible with strategies for minimally invasive NP repair in terms of injectability, tuneability, biomechanical features, and resilience. Future studies will address the capacity of NCS to integrate within degenerated NP under long-term loading conditions. STATEMENT OF SIGNIFICANCE: Current regenerative strategies still do not sufficiently support the engraftment of therapeutic cells in the nucleus pulposus (NP). We present an injectable approach based on spheroids derived from nasal chondrocytes (NC), a resilient cell type with robust cartilage-regenerative capacity. NC spheroids (NCS) generated with their own matrix and demonstrated injectability, tuneability of biomechanical/biochemical attributes, and integration potential in conditions simulating degenerative disc disease. To our knowledge, this is the first study that explored an injectable spheroid-based scaffold-free approach, which showed potential to support the adhesion and viability of therapeutic cells in degenerated NP. The provided information can be of substantial interest to a wide audience, including biomaterial scientists, biomedical engineers, biologists and medical researchers.

Keywords: Cell therapy; Chondrospheres; Degenerative disc disease; Intervertebral disc; Tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cattle
  • Chondrocytes
  • Chondrogenesis
  • Collagen
  • Humans
  • Intervertebral Disc Degeneration* / therapy
  • Intervertebral Disc*
  • Nucleus Pulposus*

Substances

  • Collagen