A thiol-based intramolecular redox switch in four-repeat tau controls fibril assembly and disassembly

J Biol Chem. 2021 Sep;297(3):101021. doi: 10.1016/j.jbc.2021.101021. Epub 2021 Jul 31.

Abstract

Oxidative stress has been implicated in the pathogenesis and progression of several tauopathies, including Alzheimer's disease. The deposition of fibrillar inclusions made of tau protein is one of the pathological hallmarks of these disorders. Although it is becoming increasingly evident that the specific fibril structure may vary from one tauopathy to another and it is recognized that different types of isoforms (three-repeat and four-repeat tau) can be selectively deposited, little is known about the role oxidation may play in aggregation. Four-repeat tau contains two cysteines that can form an intramolecular disulfide bond, resulting in a structurally restrained compact monomer. There is discrepancy as to whether this monomer can aggregate or not. Using isolated four-repeat tau monomers (htau40) with intramolecular disulfide bonds, we demonstrate that these proteins form fibrils. The fibrils are less stable than fibrils formed under reducing conditions but are highly effective in seeding oxidized tau monomers. Conversely, a strong seeding barrier prevents incorporation of reduced tau monomers, tau mimics in which the cysteines have been replaced by alanines or serines, and three-repeat tau (htau23), a single-cysteine isoform. The barrier also holds true when seed and monomer types are reversed, indicating that oxidized and reduced tau are incompatible with each other. Surprisingly, fibrils composed of compact tau disaggregate upon reduction, highlighting the importance of the intramolecular disulfide bond for fibril stability. The findings uncover a novel binary redox switch that controls the aggregation and disaggregation of these fibrils and extend the conformational spectrum of tau aggregates.

Keywords: Alzheimer's disease; aggregation; amyloid; conformation; disulfide; fibril; prion; redox switch; seeding barrier; tau protein; thiol.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / metabolism
  • Oxidation-Reduction
  • Protein Isoforms / metabolism
  • Sulfhydryl Compounds / metabolism*
  • tau Proteins / metabolism*

Substances

  • Protein Isoforms
  • Sulfhydryl Compounds
  • tau Proteins