Low-Level Erbium-Doped Yttrium Aluminum Garnet Laser Irradiation Induced Alteration of Gene Expression in Osteogenic Cells from Rat Calvariae

Photobiomodul Photomed Laser Surg. 2021 Aug;39(8):566-577. doi: 10.1089/photob.2020.4958. Epub 2021 Jul 30.

Abstract

Objective: The aim of this study was to investigate the effect of low-level erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiation on gene expression in osteogenic cells from rat calvariae. Background: Previous studies showed beneficial effects of laser irradiation on bone-related cells. However, few studies have examined the gene expression alteration by laser irradiation on osteogenic cells in a calcified condition. Materials and methods: Osteogenic cells were prepared by culturing rat calvarial osteoblast-like cells in osteoinductive medium for 21 days. The cells at the bottom of the culture dish were irradiated with Er:YAG laser (wavelength: 2.94 μm, energy density: 3.1 and 8.2 J/cm2) positioned at distance of 25 cm. Lactate dehydrogenase (LDH) assay of the irradiated cells was performed. After screening for genes related to bone formation, mechanotransduction, and thermal effect by quantitative polymerase chain reaction (qPCR), gene expression at 3 h after 3.1 J/cm2 irradiation was comprehensively analyzed using microarray. Results: No dramatical increase in surface temperature and LDH activities after laser irradiation were observed. Sost expression was significantly reduced at 3 h after 3.1 J/cm2 irradiation. Bcar1 and Hspa1a expression was significantly increased following 8.2 J/cm2 irradiation. Microarray analysis identified 116 differentially expressed genes. Gene set enrichment analysis showed enrichment of histone H3-K9 methylation and modification gene sets. Conclusions: Er:YAG laser irradiation, especially at 3.1 J/cm2, showed positive effect on the expression of genes related to bone formation in osteogenic cells, without inducing significant cell damage. These findings may represent critical mechanisms of early bone formation after Er:YAG laser irradiation.

Keywords: Er:YAG laser; gene expression; mechanotransduction; microarray; osteogenic cell; photobiomodulation.

MeSH terms

  • Animals
  • Gene Expression
  • Lasers, Solid-State*
  • Mechanotransduction, Cellular
  • Osteogenesis / genetics
  • Rats
  • Skull