Online Solid-Phase Extraction-Inductively Coupled Plasma-Quadrupole Mass Spectrometry with Oxygen Dynamic Reaction for Quantification of Technetium-99

ACS Omega. 2021 Jul 16;6(29):19281-19290. doi: 10.1021/acsomega.1c02756. eCollection 2021 Jul 27.

Abstract

Quantification of pg/L levels (i.e., 0.6 mBq/L) of radioactive technetium-99 (99Tc) was achieved within 15 min in the presence of isobaric and polyatomic interference sources such as ruthenium-99 (99Ru) and molybdenum hydride (98Mo1H) at 3-11 orders of magnitude higher concentrations. Online solid-phase extraction-inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) with oxygen (O2) dynamic reaction cell (online SPE-ICP-MS-DRC) was shown to be a thorough automatic analytical system, circumventing the need for human handling. At three stepwise separations (SPE-DRC-Q mass filters), we showed that interference materials allowed the coexistence of abundance ratios of 1.5 × 10-13 and 1.1 × 10-5 for 99Tc/Mo and 99Tc/Ru, respectively. A classical mathematical correction using the natural isotope ratio of 99Ru/102Ru was used to calculate the residues of 99Ru. Using this optimized system, a detection limit (DL; 3σ) of 99Tc was 9.3 pg/L (= 5.9 mBq/L) for a 50 mL injection and sequential measurements were undertaken at a cycle of 24 min/sample. For the measurement of a lower concentration of 99Tc, an AG1-X8 anion-exchange column was used to study 20 L of seawater. Its DL was approximately 1000 times greater than that of previous methods (70.0 fg/L). Thus, this method withstands coexistences of 5.8 × 10-18 and 3.5 × 10-9 for 99Tc/Mo and 99Tc/Ru, respectively. Spike and recovery tests were conducted for environmental samples; the resulting values showed good agreement with the spike applied.