LncRNA AFAP1-AS1/miR-27b-3p/VEGF-C axis modulates stemness characteristics in cervical cancer cells

Chin Med J (Engl). 2021 Jul 29;134(17):2091-2101. doi: 10.1097/CM9.0000000000001665.

Abstract

Background: Long non-coding RNA (lncRNA) actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) functions as a competing endogenous RNA to regulate target genes expression by sponging microRNAs (miRs) to play cancer-promoting roles in cancer stem cells. However, the regulatory mechanism of AFAP1-AS1 in cervical cancer (CC) stem cells is unknown. The present study aimed to provide a new therapeutic target for the clinical treatment of CC.

Methods: Hyaluronic acid receptor cluster of differentiation 44 variant exon 6 (CD44v6)(+) CC cells were isolated by flow cytometry (FCM). Small interfering RNAs of AFAP1-AS1 (siAFAP1-AS1) were transfected into the (CD44v6)(+) cells. The levels of AFAP1-AS1 were measured by quantitative real-time PCR (qRT-PCR). Sphere formation assay, cell cycle analysis, and Western blotting were used to detect the effect of siAFAP1-AS1. RNA pull-down and luciferase reporter assay were used to verify the relationship between miR-27b-3p and AFAP1-AS1 or vascular endothelial growth factor (VEGF)-C.

Results: CD44v6(+) CC cells had remarkable stemness and a high level of AFAP1-AS1. However, AFAP1-AS1 knockdown with siAFAP1-AS1 suppressed the cell cycle transition of G(1)/S phase and inhibited self-renewal of CD44v6(+) CC cells, the levels of the stemness markers octamer-binding transcription factor 4 (OCT4), osteopontin (OPN), and cluster of differentiation 133 (CD133), and the epithelial-mesenchymal transition (EMT)-related proteins Twist1, matrix metalloprotease (MMP)-9, and VEGF-C. In the mechanism study, miR-27b-3p/VEGF-C signaling was demonstrated to be a key downstream of AFAP1-AS1 in the CD44v6(+) CC cells.

Conclusions: LncRNA AFAP1-AS1 knockdown inhibits the CC cell stemness by upregulating miR-27b-3p to suppress VEGF-C.

MeSH terms

  • Cell Line, Tumor
  • Cell Proliferation / genetics
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • MicroRNAs* / genetics
  • RNA, Long Noncoding* / genetics
  • Uterine Cervical Neoplasms* / genetics
  • Vascular Endothelial Growth Factor A / genetics
  • Vascular Endothelial Growth Factor C

Substances

  • MicroRNAs
  • RNA, Long Noncoding
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factor C