Gold-Platinum Nanodots with High-Peroxidase-like Activity and Photothermal Conversion Efficiency for Antibacterial Therapy

ACS Appl Mater Interfaces. 2021 Aug 11;13(31):37535-37544. doi: 10.1021/acsami.1c10600. Epub 2021 Jul 29.

Abstract

Combined therapeutic strategies for bacterial infection have attracted worldwide attention owing to their faster and more effective therapy with fewer side effects compared with monotherapy. In this work, gold-platinum nanodots (AuPtNDs) are simply and quickly synthesized by a one-step method. They not only exhibit powerful peroxidase-like activity but also confer a higher affinity for hydrogen peroxide (H2O2), which is 3.4 times that of horseradish peroxidase. Under 808 nm laser irradiation, AuPtNDs also have excellent photothermal conversion efficiency (50.53%) and strong photothermal stability. Excitingly, they can combat bacterial infection through the combination of chemodynamic and photothermal therapy. In vitro antibacterial results show that the combined antibacterial strategy has a broad-spectrum antibacterial property against both Escherichia coli (Gram negative, 97.1%) and Staphylococcus aureus (Gram positive, 99.3%). Animal experiments further show that nanodots can effectively promote the healing of bacterial infection wounds. In addition, owing to good biocompatibility and low toxicity, they are hardly traceable in the main organs of mice, which indicates that they can be well excreted through metabolism. These results reveal the application potential of AuPtNDs as a simple and magic multifunctional nanoparticle in antibacterial therapy and open up new applications for clinical anti-infective therapy in the near future.

Keywords: bacterial infection; chemodynamic therapy; gold−platinum; nanodots; photothermal therapy.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemical synthesis
  • Anti-Bacterial Agents / radiation effects
  • Anti-Bacterial Agents / therapeutic use*
  • Anti-Bacterial Agents / toxicity
  • Catalysis
  • Escherichia coli / drug effects
  • Gold / chemistry
  • Gold / radiation effects
  • Gold / therapeutic use
  • Gold / toxicity
  • HEK293 Cells
  • Humans
  • Infrared Rays
  • Mice
  • Mice, Inbred BALB C
  • Microbial Sensitivity Tests
  • Photothermal Therapy
  • Platinum / chemistry
  • Platinum / radiation effects
  • Platinum / therapeutic use
  • Platinum / toxicity
  • Quantum Dots / chemistry
  • Quantum Dots / radiation effects
  • Quantum Dots / therapeutic use*
  • Quantum Dots / toxicity
  • Staphylococcal Skin Infections / drug therapy*
  • Staphylococcus aureus / drug effects
  • Wound Healing / drug effects

Substances

  • Anti-Bacterial Agents
  • Platinum
  • Gold