Titanium complexes of pyrrolylaldiminate ligands and their exploitation for the ring-opening polymerization of cyclic esters

Dalton Trans. 2021 Aug 21;50(31):10964-10981. doi: 10.1039/d1dt01470f. Epub 2021 Jul 28.

Abstract

A series of six-coordinate titanium complexes 1-6 supported by pyrrolylaldiminate ligands were prepared via the reaction of 2 equivalents of ligands and Ti(OiPr)4 in toluene at 70 °C. The X-ray structure of 2 revealed that the two ligands were κ2-coordinated to the titanium center with the two pyrrole nitrogen atoms in trans positions and the two imine nitrogen atoms in cis positions. All complexes were active initiators for the ring-opening polymerization (ROP) of rac-lactide (rac-LA), ε-caprolactone (ε-CL), and three substituted ε-caprolactones (γ-methyl-ε-caprolactone (γMeCL), γ-ethyl-ε-caprolactone (γEtCL), and γ-phenyl-ε-caprolactone (γPhCL)). Polymerizations of all monomers were well controlled, affording predetermined molar masses and narrow dispersity values. Complex 5 exhibited the highest polymerization activities with rac-LA and ε-CL and its performance was comparable to other highly active six-coordinate titanium complexes reported thus far. Kinetic results revealed a first-order dependency on the monomer concentration, and the rate of polymerization was greatly influenced by the substituent on the imine nitrogen. End-group analysis of the isolated PLA and PCL suggested a coordination-insertion mechanism.