Upgrading Hepatic Differentiation and Functions on 3D Printed Silk-Decellularized Liver Hybrid Scaffolds

ACS Biomater Sci Eng. 2021 Aug 9;7(8):3861-3873. doi: 10.1021/acsbiomaterials.1c00671. Epub 2021 Jul 28.

Abstract

We developed hybrid liver-specific three-dimensional (3D) printed scaffolds using a solubilized native decellularized liver (DCL) matrix and silk fibroin (SF) and investigated their ability to support functional cultures of hepatic cells. Rat livers were decellularized by perfusing detergents via the portal vein, solubilized using pepsin to form DCL, and characterized. SF blended with gelatin (8% w/v) was optimized with varying percentages of DCL to obtain silk gelatin-DCL bioink (SG-DCL). Different compositions of SG-DCL were studied by rheology for optimum versatility and print fidelity. 3D printed six-layered scaffolds were fabricated using a sophisticated direct-write 3D bioprinter. Huh7 cells were cultured on the 3D printed scaffolds for 3 weeks. 3D printed SG scaffolds without DCL along with 2D films (SG and SG-DCL) and 2D culture on tissue culture Petri dish control were used for comparative studies. The DCL matrix showed the absence of cells in histology and SEM. The combined SG-DCL ink at all of the studied DCL percentages (1-10%) revealed shear-thinning behavior in the printable range. The storage modulus value for the SG-DCL ink at all DCL percentages was higher than the loss modulus. In comparison to 2D controls, hepatic cells cultured on 3D SG-DCL revealed increased proliferation until 2 weeks and an upregulated expression of hepatocyte markers, including asialoglycoprotein receptor 1 (ASGR1). The Wnt pathway gene β-catenin was upregulated by more than 4-fold in 3D SG-DCL on day 3, while it showed a decline on day 7 as compared to 3D SG and also 2D controls. The expression of the epithelial cell adhesion molecule (EpCAM) was however lower in both 2D SG-DCL (2-fold) and 3D SG-DCL (2.5-fold) as compared to that in 2D controls. Immunofluorescence studies validated the protein expression of ASGR1 in 3D SG-DCL. Albumin (ALB) was not identified on SG scaffolds but prominently expressed in 3D SG-DCL constructs. In comparison to 2D SG, both ALB (1.8-fold) and urea (5-fold) were enhanced in cells cultured on 3D SG-DCL on day 7 of culture. Hence, the SG-DCL 3D printed scaffolds provide a conducive microenvironment for elevating differentiation and functions of hepatic cells possibly through an involvement of the Wnt/β-catenin signaling pathway.

Keywords: 3D printed scaffold; decellularized matrix; liver; silk.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation
  • Liver
  • Printing, Three-Dimensional
  • Rats
  • Silk*
  • Tissue Scaffolds*

Substances

  • Silk