Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of Microcystis aeruginosa: Characterization, performance and mechanism

J Hazard Mater. 2022 Jan 5:421:126703. doi: 10.1016/j.jhazmat.2021.126703. Epub 2021 Jul 21.

Abstract

Water eutrophication leads to increasingly serious harmful algal blooms (HABs), which poses tremendous threats on aquatic environment and human health. In this work, a novel magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 (ZFO/AP/CN) photocatalyst with double Z-scheme was constructed for Microcystis aeruginosa (M. aeruginosa) inactivation and Microcystin-LR (MC-LR) degradation under visible light. The photocatalyst was characterized by XRD, SEM, EDS, TEM, XPS, FTIR, UV-vis, PL, and VSM. Approximately 96.33% of chlorophyll a was degraded by ZFO/AP/CN (100 mg/L) after 3 h of visible light irradiation. During the photocatalytic process, the malondialdehyde (MDA) of M. aeruginosa increased, the activities of superoxide dismutase (SOD) and catalase (CAT) increased initially and decreased afterwards. Furthermore, the photocatalytic removal efficiency of M. aeruginosa (OD680 ≈0.732) and MC-LR (0.2 mg/L) reached 94.31% and 76.92%, respectively, in the simultaneous removal of algae and algal toxin experiment. Reactive species scavenging experiments demonstrated that·O2- and·OH played key roles in inactivating M. aeruginosa and degrading MC-LR. The excellent recoverability and stability of ZFO/AP/CN were proved by cycling photocatalytic experiment which using magnetic recovery method. In summary, the synthesized magnetically separable ZFO/AP/CN photocatalyst has remarkable photocatalytic activity under visible light and shows promising potential for practical application of alleviating HABs.

Keywords: Double Z-scheme mechanism; Inactivation and degradation mechanism; Magnetically separable photocatalyst; Microcystis aeruginosa; Visible light.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Chlorophyll A
  • Harmful Algal Bloom
  • Light
  • Microcystis*

Substances

  • Chlorophyll A