Ameliorating effect of nitrate on nitrite inhibition for denitrifying P-accumulating organisms

Sci Total Environ. 2021 Nov 25:797:149133. doi: 10.1016/j.scitotenv.2021.149133. Epub 2021 Jul 20.

Abstract

Lowered air supply and organic carbon need are the key factors to reduce wastewater treatment costs and thereby, avoid eutrophication. Denitrifying PO43-- removal (DPR) process using nitrate instead of oxygen for PO43- uptake was started up in the sequencing batch reactor (SBR) at a nitrate dosing rate of 20-25 mg N L-1 d-1. Operation with a real municipal wastewater supplied with CH3COONa, K2HPO4 and KNO3 succeeded in the cultivation of biomass containing denitrifying polyphosphate accumulating organisms (DPAOs). The durations of SBR process anaerobic/anoxic/oxic cycles were 1.5 h, 3.5 h and 1 h, respectively. SBR operation resulted in a maximum PO43--P uptake of 17 mg PO43--P g-1 MLSS. The highest TN and PO43- removal efficiencies were observed during the first half of reactor operation at 77 (±10) % and 71 (±5) %, respectively. An average COD removal rate of 172 (±98) mg g-1 MLSS and a high average removal efficiency of 89 (±4) % were achieved. Nitrite effect with/without nitrate as DPR electron acceptor was investigated in batch-scale to show possibilities to use high nitrite and nitrate contents simultaneously as electron acceptors for the anoxic phosphate uptake. Nitrate attenuation against nitrite toxicity can be economically justified in full-scale treatment applications in which wastewater has a high nitrogen content. Nitrate attenuated nitrite toxicity (caused by nitrite content at 5-100 mg NO2--N L-1) when using supplemental additions of nitrate (at concentrations of 45-200 mg NO3--N L-1) in batch tests. Illumina sequencing emphasized that during biomass adaption microbial community changed by lowered aerobic cycle length and by lowered nitrate dosing towards representation of key DPAO/PAO- organisms, such as Candidatus Accumulibacter, Xanthomonadaceae, Comomonadaceae, Saprospiraceae and Rhodocyclaceae. This study showed that DPAO biomass adaption to nitrate maintained an efficient COD, nitrogen and phosphorus removal and the biomass can be applied for treatment of wastewater containing high nitrite and nitrate content.

Keywords: COD removal rate; DPR process; Nitrite toxicity attenuation; PHA; Volatile fatty acids.

MeSH terms

  • Bioreactors
  • Denitrification
  • Nitrates*
  • Nitrites*
  • Nitrogen
  • Phosphorus
  • Polyphosphates
  • Sewage
  • Waste Disposal, Fluid

Substances

  • Nitrates
  • Nitrites
  • Polyphosphates
  • Sewage
  • Phosphorus
  • Nitrogen