Manifestation of apomictic potentials in the line AS-3 of Sorghum bicolor (L.) Moench

Planta. 2021 Jul 26;254(2):37. doi: 10.1007/s00425-021-03681-6.

Abstract

AS-3 line of Sorghum bicolor possesses functional components of apomixis-apospory, parthenogenesis and autonomous endospermogenesis. The data obtained indicate efficiency of selection for apomixis components in diploid species of cultivated crops. Apomixis (seed formation without fertilization) is one of most attractive phenomena in plant biology. In this paper, we provide the results of long-term selection for apomixis components in the progeny of grain sorghum (Sorghum bicolor (L.) Moench) hybrid plants with male sterility mutation. Selection was carried out for a high frequency of aposporous embryo sacs (ESs), autonomous pro-embryos, and the presence of maternal-type plants in test crosses with the line Volzhskoe-4v (V4v) homozygous for the Rs1 genes determining the red color of the leaves and stem of the hybrids. As a result of using this approach, the line, AS-3, was created, in which the frequency of ovaries with parthenogenetic embryos reached 42-45%. The autonomous development of embryos and endosperm was observed in the panicles of each of the 10 cytologically studied plants of this line. The frequency of parthenogenesis positively correlated with the high average daily air temperature during the first five out of 10 days preceding the onset of flowering (r = 0.75; P > 0.01). Genotyping of the plants from the progeny of hand-emasculated panicles of AS-3 pollinated with V4v performed using co-dominant SSR markers revealed that the F1 hybrids carrying the Rs1 gene (chromosome 6) possessed both paternal and maternal alleles of Sb1-10 (chromosome 4) and Xtxp320 (chromosome 10) markers, while in the maternal-type plants (rs1rs1), only the maternal alleles of these markers were present. In the endosperm of the kernels from which the maternal-type seedlings were obtained, only the maternal alleles were present, while in the endosperm of the kernels that produced hybrid seedlings, both the paternal and maternal alleles were observed. The data obtained indicate the presence of functional components of apomixis (apospory, parthenogenesis, autonomous endospermogenesis) in the grain sorghum line AS-3, and the efficiency of selection for apomixis in functionally diploid species of cultivated crops.

Keywords: Apomixis; Apospory; Autonomous endosperm; Parthenogenesis; SSR markers; Sorghum bicolor.

MeSH terms

  • Apomixis*
  • Diploidy
  • Endosperm / genetics
  • Seeds / genetics
  • Sorghum* / genetics