Correlation between Kinetics and Thermodynamics for Excited-State Intramolecular Proton Transfer Reactions

J Phys Chem A. 2021 Aug 5;125(30):6611-6620. doi: 10.1021/acs.jpca.1c04192. Epub 2021 Jul 25.

Abstract

Finding the relation between thermodynamics and kinetics for a reaction is of fundamental importance. Here, the thermodynamics and kinetics correlation of excited-state intramolecular proton transfer (ESIPT) was investigated by the TD-DFT calculation under the CAM-B3LYP/6-311+G** level. We choose the family 2-(2'-aminophyenyl)benzothiazole and its amino derivatives as paradigms, which all possess the NH-type intramolecular hydrogen bond (H-bond), and investigate the corresponding ESIPT reaction. The H-bond strength can be systematically tuned, so both activation energy ΔG and free energy difference between proton transfer tautomer (T*, product) and normal species (N*, reactant) ΔGT*-N* can be varied. To minimize the environmental interference such as solvent external H-bond and polarity perturbation, a nonpolar solvent such as cyclohexane is chosen as a bath with a polarizable continuum solvation model for the calculation. As a result, the comprehensive computational approach reveals a linear relationship between ΔGT*-N* and ΔG, which can be expressed as ΔG = ΔG0 + αΔGT*-N*. The fundamental insight is reminiscent of the Bell-Evans-Polanyi (BEP) principle where α represents the character of the position of the transition state along the proton motion coordinate. In other words, the more exergonic the ESIPT reaction is, the faster the proton transfer rate can be observed. To verify that such a correlation is not a sporadic event, another ESIPT family with an -OH proton, 1-hydroxy-11H-benzo[b]fluoren-11-one and its derivatives, was also investigated and proved to follow the BEP principle as well. Unlike the quantum mechanics description of proton transfer where either proton tunneling is dominant or solute/solvent is coupled in ESIPT, this work demonstrates that reaction kinetics and thermodynamics are strongly correlated within the same class of ESIPT molecules with an intrinsic barrier free from solvent perturbation, being faster with the more exergonic reaction.