3D-Printed Complex Microstructures with a Self-Sacrificial Structure Enabled by Grayscale Polymerization and Ultrasonic Treatment

ACS Omega. 2021 Jul 8;6(28):18281-18288. doi: 10.1021/acsomega.1c02177. eCollection 2021 Jul 20.

Abstract

Complex three-dimensional (3D) microstructures are attracting more and more attention in many applications such as microelectromechanical systems, biomedical engineering, new materials, new energy, environmental protection, and wearable electronics. However, fabricating complex 3D microstructures by 3D printing techniques, especially those with long suspended structures, needs to introduce additional supporting structures, which are difficult to be removed. Here, we propose a simple method in which the supporting structures can be easily removed by optimizing their size and the grayscale value working with ultrasonic treatment in ethanol solution. The 3D microstructures and the supporting structures made of the same insoluble materials are fabricated simultaneously by using a projection microstereolithography system with a dynamic mask. The results demonstrate that the supporting structures play a key role in the fabrication of the long suspended structures while they can be easily removed. The removal time decreases with the increase in the height of the supporting microstructures, and the breaking force and shearing force of the supporting structures increase with the increase in their grayscale and the diameter. In addition, theory and the multiphysics simulation validate that the stress concentration at the top and the bottom of the supporting structures due to the cavitation from ultrasonic vibration dominates the removal of the supporting structures. Finally, a tree-like structure is precisely fabricated by using our method. The present study provides a new way for the removal of the supporting structures for 3D printed suspended microstructures.