Synergetic Effects during Co-Pyrolysis of Sheep Manure and Recycled Polyethylene Terephthalate

Polymers (Basel). 2021 Jul 19;13(14):2363. doi: 10.3390/polym13142363.

Abstract

Continuous growth in energy demand and plastic waste production are two global emerging issues that require development of clean technologies for energy recovery and solid waste disposal. Co-pyrolysis is an effective thermochemical route for upgrading waste materials to produce energy and value added products. In this study, co-pyrolysis of sheep manure (SM) and recycled polyethylene terephthalate (PET) was studied for the first time in a thermogravimetric analyzer (TGA) in the temperature range of 25-1000 °C with heating rates of 10-30-50 °C min-1 under a nitrogen atmosphere. The synergetic effects of co-pyrolysis of two different waste feedstock were investigated. The kinetic parameters are determined using the Flynn-Wall-Ozawa (FWO) model. The results revealed that the mean values of apparent activation energy for the decomposition of sheep manure into a recycled polyethylene terephthalate blend are determined to be 86.27, 241.53, and 234.51 kJ/mol, respectively. The results of the kinetic study on co-pyrolysis of sheep manure with plastics suggested that co-pyrolysis is a viable technique to produce green energy.

Keywords: animal manure; co-pyrolysis; kinetics; plastic waste; synergy.