The Role of Aryldiazonium Chemistry in Designing Electrochemical Aptasensors for the Detection of Food Contaminants

Materials (Basel). 2021 Jul 10;14(14):3857. doi: 10.3390/ma14143857.

Abstract

Food safety monitoring assays based on synthetic recognition structures such as aptamers are receiving considerable attention due to their remarkable advantages in terms of their ability to bind to a wide range of target analytes, strong binding affinity, facile manufacturing, and cost-effectiveness. Although aptasensors for food monitoring are still in the development stage, the use of an electrochemical detection route, combined with the wide range of materials available as transducers and the proper immobilization strategy of the aptamer at the transducer surface, can lead to powerful analytical tools. In such a context, employing aryldiazonium salts for the surface derivatization of transducer electrodes serves as a simple, versatile and robust strategy to fine-tune the interface properties and to facilitate the convenient anchoring and stability of the aptamer. By summarizing the most important results disclosed in the last years, this article provides a comprehensive review that emphasizes the contribution of aryldiazonium chemistry in developing electrochemical aptasensors for food safety monitoring.

Keywords: aptasensor; aryldiazonium chemistry; electrochemical detection; food contaminants.

Publication types

  • Review