Bonding Behavior of Conventional PMMA towards Industrial CAD/CAM PMMA and Artificial Resin Teeth for Complete Denture Manufacturing in a Digital Workflow

Materials (Basel). 2021 Jul 8;14(14):3822. doi: 10.3390/ma14143822.

Abstract

When applying a digital workflow, custom artificial resin teeth have to be integrated into a milled complete denture base, using polymethylmethacrylate (PMMA) applied with a powder-liquid technique. Debonding of denture teeth from dentures is reported to be a frequent complication. No evidence is provided as to which method of surface treatment may enhance the bonding strength. The bonding strength between artificial teeth and PMMA (Group A, n = 60), as well as between the PMMA and industrial PMMA (Group B, n = 60), was investigated following no treatment, monomer application, sandblasting, oxygen plasma, and nitrogen plasma treatment. Surface-roughness values and SEM images were obtained for each group. Shear bond strength (SBS) and fracture mode were analyzed after thermocycling. Within Group A, statistically significant higher SBS was found for all surface treatments, except for nitrogen plasma. In Group B, only nitrogen plasma showed a statistically lower SBS compared to the reference group which was equivalent to all surface treatments. Conclusions: Within the limitations of the present study, the monomer application can be proposed as the most effective surface-treatment method to bond custom artificial teeth into a milled PMMA denture base, whereas nitrogen plasma impairs the bonding strength.

Keywords: dental prosthesis; denture bases; edentulous jaw; prosthodontics; self-curing of dental resins.